25 research outputs found

    Colorimetric sensing of anions by a neutral biphenyl based amide receptor

    Get PDF
    A new colorimetric sensor for fluoride is described. Compound 1 shows an open structure and its behaviour is compared with that of two related closed compounds 2 and 3. In all cases, the red colour developed in the presence of fluoride can be related to deprotonation processes, however ligand 1 gives rise to a faster colour change than 2 or 3 because of its higher flexibility. Other halides as well as carboxylates have been studied and the stoichiometry and complexation constants for the corresponding ligands have been determined.Costero Nieto, Ana Maria, [email protected] ; Peransi Llopis, Sergio Manuel, [email protected]

    Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry

    Full text link
    [EN] A new colorimetric system for NO(g) detection is described. The detection method is based on the aggregation of modified AuNPs through a Cu(I) catalyzed click reaction promoted by the in situ reduction of Cu(II) by NOWe acknowledge the Spanish Government (MAT2009-14564-C04-03 and MAT2012-38429-C04-02) for financial support. A. M. is grateful to the Spanish Government for a fellowship. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.Marti, A.; Costero Nieto, AM.; Gaviña Costero, P.; Parra Álvarez, M. (2015). Selective colorimetric NO(g) detection based on the use of modified gold nanoparticles using click chemistry. Chemical Communications. 51(15):3077-3079. https://doi.org/10.1039/c4cc10149aS307730795115Nagano, T. (1999). Practical methods for detection of nitric oxide. Luminescence, 14(6), 283-290. doi:10.1002/(sici)1522-7243(199911/12)14:63.0.co;2-gL. J. Ignarro , Nitric Oxide: Biology and Pathobiology, Academic Press, San Diego, 2010Ma, S., Fang, D.-C., Ning, B., Li, M., He, L., & Gong, B. (2014). The rational design of a highly sensitive and selective fluorogenic probe for detecting nitric oxide. Chem. Commun., 50(49), 6475-6478. doi:10.1039/c4cc01142bKojima, H., Nakatsubo, N., Kikuchi, K., Kawahara, S., Kirino, Y., Nagoshi, H., … Nagano, T. (1998). Detection and Imaging of Nitric Oxide with Novel Fluorescent Indicators:  Diaminofluoresceins. Analytical Chemistry, 70(13), 2446-2453. doi:10.1021/ac9801723Chen, X., Tian, X., Shin, I., & Yoon, J. (2011). Fluorescent and luminescent probes for detection of reactive oxygen and nitrogen species. Chemical Society Reviews, 40(9), 4783. doi:10.1039/c1cs15037eBeltrán, A., Isabel Burguete, M., Abánades, D. R., Pérez-Sala, D., Luis, S. V., & Galindo, F. (2014). Turn-on fluorescent probes for nitric oxide sensing based on the ortho-hydroxyamino structure showing no interference with dehydroascorbic acid. Chemical Communications, 50(27), 3579. doi:10.1039/c3cc49555hLv, X., Wang, Y., Zhang, S., Liu, Y., Zhang, J., & Guo, W. (2014). A specific fluorescent probe for NO based on a new NO-binding group. Chem. Commun., 50(56), 7499-7502. doi:10.1039/c4cc03540bSaha, K., Agasti, S. S., Kim, C., Li, X., & Rotello, V. M. (2012). Gold Nanoparticles in Chemical and Biological Sensing. Chemical Reviews, 112(5), 2739-2779. doi:10.1021/cr2001178Mayer, K. M., & Hafner, J. H. (2011). Localized Surface Plasmon Resonance Sensors. Chemical Reviews, 111(6), 3828-3857. doi:10.1021/cr100313vMartí, A., Costero, A. M., Gaviña, P., Gil, S., Parra, M., Brotons-Gisbert, M., & Sánchez-Royo, J. F. (2013). Functionalized Gold Nanoparticles as an Approach to the Direct Colorimetric Detection of DCNP Nerve Agent Simulant. European Journal of Organic Chemistry, 2013(22), 4770-4779. doi:10.1002/ejoc.201300339Zhou, Y., Wang, S., Zhang, K., & Jiang, X. (2008). Visual Detection of Copper(II) by Azide- and Alkyne-Functionalized Gold Nanoparticles Using Click Chemistry. Angewandte Chemie International Edition, 47(39), 7454-7456. doi:10.1002/anie.200802317Hua, C., Zhang, W. H., De Almeida, S. R. M., Ciampi, S., Gloria, D., Liu, G., … Gooding, J. J. (2012). A novel route to copper(ii) detection using ‘click’ chemistry-induced aggregation of gold nanoparticles. The Analyst, 137(1), 82-86. doi:10.1039/c1an15693dZhang, Y., Li, B., & Xu, C. (2010). Visual detection of ascorbic acid via alkyne–azide click reaction using gold nanoparticles as a colorimetric probe. The Analyst, 135(7), 1579. doi:10.1039/c0an00056fTran, D., & Ford, P. C. (1996). Nitric Oxide Reduction of the Copper(II) Complex Cu(dmp)22+(dmp = 2,9-Dimethyl-1,10-phenanthroline). Inorganic Chemistry, 35(9), 2411-2412. doi:10.1021/ic9511175Tsuge, K., DeRosa, F., Lim, M. D., & Ford, P. C. (2004). Intramolecular Reductive Nitrosylation:  Reaction of Nitric Oxide and a Copper(II) Complex of a Cyclam Derivative with Pendant Luminescent Chromophores. Journal of the American Chemical Society, 126(21), 6564-6565. doi:10.1021/ja049444bLim, M. H., & Lippard, S. J. (2005). Copper Complexes for Fluorescence-Based NO Detection in Aqueous Solution. Journal of the American Chemical Society, 127(35), 12170-12171. doi:10.1021/ja053150oApfel, U.-P., Buccella, D., Wilson, J. J., & Lippard, S. J. (2013). Detection of Nitric Oxide and Nitroxyl with Benzoresorufin-Based Fluorescent Sensors. Inorganic Chemistry, 52(6), 3285-3294. doi:10.1021/ic302793wHaiss, W., Thanh, N. T. K., Aveyard, J., & Fernig, D. G. (2007). Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Analytical Chemistry, 79(11), 4215-4221. doi:10.1021/ac0702084Lin, S.-Y., Tsai, Y.-T., Chen, C.-C., Lin, C.-M., & Chen, C. (2004). Two-Step Functionalization of Neutral and Positively Charged Thiols onto Citrate-Stabilized Au Nanoparticles. The Journal of Physical Chemistry B, 108(7), 2134-2139. doi:10.1021/jp036310wLiu, X., Atwater, M., Wang, J., & Huo, Q. (2007). Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids and Surfaces B: Biointerfaces, 58(1), 3-7. doi:10.1016/j.colsurfb.2006.08.005Brotherton, W. S., Michaels, H. A., Simmons, J. T., Clark, R. J., Dalal, N. S., & Zhu, L. (2009). Apparent Copper(II)-Accelerated Azide−Alkyne Cycloaddition. Organic Letters, 11(21), 4954-4957. doi:10.1021/ol902111

    Fluorescent sensing of maleate versus fumarate by a neutral cyclohexane based thiourea receptor

    Get PDF
    A new cyclohexyl based fluorescent anion receptor, is able to recognize maleate versus fumarate both as their TMA salts.Costero Nieto, Ana Maria, [email protected] ; Colera Llavata, Manuel, [email protected] ; Gaviña Costero, Pablo, [email protected] ; Gil Grau, Salvador, [email protected]

    Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties

    Full text link
    Two new aryl carbinols (1 and 3) have been synthesised and characterised and their ability as OFF-ON probes for the chromogenic detection of the nerve agent simulant in acetonitrile has been tested. In addition compound 2 has been also studied. The carbinols suffered a phosphorylation reaction followed by an elimination process giving rise to the corresponding carbocations. This transformation of the carbinol into the carbocation is responsible for a significant color change. © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2012.Financial support from the Spanish Government (project MAT2009-14564-C04-01) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. R. G. is grateful to the Spanish Ministry of Education and S. R. to Generalitat Valencia for their grants.Royo Calvo, S.; Gotor Candel, RJ.; Costero Nieto, AM.; Parra Álvarez, M.; Gil Grau, S.; Martínez Mañez, R.; Sancenón Galarza, F. (2012). Aryl carbinols as nerve agent probes. Influence of the conjugation on the sensing properties. New Journal of Chemistry. 36(12):1485-1489. https://doi.org/10.1039/c2nj40104eS148514893612Sadik, O. A., Land, W. H., & Wang, J. (2003). Targeting Chemical and Biological Warfare Agents at the Molecular Level. Electroanalysis, 15(14), 1149-1159. doi:10.1002/elan.200390140Russell, A. J., Berberich, J. A., Drevon, G. F., & Koepsel, R. R. (2003). Biomaterials for Mediation of Chemical and Biological Warfare Agents. Annual Review of Biomedical Engineering, 5(1), 1-27. doi:10.1146/annurev.bioeng.5.121202.125602Wang, H., Wang, J., Choi, D., Tang, Z., Wu, H., & Lin, Y. (2009). EQCM immunoassay for phosphorylated acetylcholinesterase as a biomarker for organophosphate exposures based on selective zirconia adsorption and enzyme-catalytic precipitation. Biosensors and Bioelectronics, 24(8), 2377-2383. doi:10.1016/j.bios.2008.12.013Im, H.-J., & Song, K. (2009). Applications of Prompt Gamma Ray Neutron Activation Analysis: Detection of Illicit Materials. Applied Spectroscopy Reviews, 44(4), 317-334. doi:10.1080/05704920902852125Sohn, H., Létant, S., Sailor, M. J., & Trogler, W. C. (2000). Detection of Fluorophosphonate Chemical Warfare Agents by Catalytic Hydrolysis with a Porous Silicon Interferometer. Journal of the American Chemical Society, 122(22), 5399-5400. doi:10.1021/ja0006200Steiner, W. E., Klopsch, S. J., English, W. A., Clowers, B. H., & Hill, H. H. (2005). Detection of a Chemical Warfare Agent Simulant in Various Aerosol Matrixes by Ion Mobility Time-of-Flight Mass Spectrometry. Analytical Chemistry, 77(15), 4792-4799. doi:10.1021/ac050278fBurnworth, M., Rowan, S. J., & Weder, C. (2007). Fluorescent Sensors for the Detection of Chemical Warfare Agents. Chemistry - A European Journal, 13(28), 7828-7836. doi:10.1002/chem.200700720Thomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Royo, S., Martínez-Máñez, R., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2007). Chromogenic and fluorogenic reagents for chemical warfare nerve agents’ detection. Chemical Communications, (46), 4839. doi:10.1039/b707063bGiordano, B., & Collins, G. (2007). Synthetic Methods Applied to the Detection of Chemical Warfare Nerve Agents. Current Organic Chemistry, 11(3), 255-265. doi:10.2174/138527207779940883Kang, S., Kim, S., Yang, Y.-K., Bae, S., & Tae, J. (2009). Fluorescent and colorimetric detection of acid vapors by using solid-supported rhodamine hydrazides. Tetrahedron Letters, 50(17), 2010-2012. doi:10.1016/j.tetlet.2009.02.087Costero, A. M., Parra, M., Gil, S., Gotor, R., Mancini, P. M. E., Martínez-Máñez, R., … Royo, S. (2010). Chromo-Fluorogenic Detection of Nerve-Agent Mimics Using Triggered Cyclization Reactions in Push-Pull Dyes. Chemistry - An Asian Journal, 5(7), 1573-1585. doi:10.1002/asia.201000058Costero, A. M., Gil, S., Parra, M., Mancini, P. M. E., Martínez-Máñez, R., Sancenón, F., & Royo, S. (2008). Chromogenic detection of nerve agent mimics. Chemical Communications, (45), 6002. doi:10.1039/b811247aCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Candel, I., Bernardos, A., Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., … Parra, M. (2011). Selective opening of nanoscopic capped mesoporous inorganic materials with nerve agent simulants; an application to design chromo-fluorogenic probes. Chemical Communications, 47(29), 8313. doi:10.1039/c1cc12727fRoyo, S., Costero, A. M., Parra, M., Gil, S., Martínez-Máñez, R., & Sancenón, F. (2011). Chromogenic, Specific Detection of the Nerve-Agent Mimic DCNP (a Tabun Mimic). Chemistry - A European Journal, 17(25), 6931-6934. doi:10.1002/chem.201100602Gotor, R., Costero, A. M., Gil, S., Parra, M., Martínez-Máñez, R., & Sancenón, F. (2011). A Molecular Probe for the Highly Selective Chromogenic Detection of DFP, a Mimic of Sarin and Soman Nerve Agents. Chemistry - A European Journal, 17(43), 11994-11997. doi:10.1002/chem.201102241Duxbury, D. F. (1993). The photochemistry and photophysics of triphenylmethane dyes in solid and liquid media. Chemical Reviews, 93(1), 381-433. doi:10.1021/cr00017a018Akiyama, S., Yoshida, K., Hayashida, M., Nakashima, K., Nakatsuji, S., & Iyoda, M. (1981). ETHYNOLOGS OF TRIPHENYLMETHANE DYES. SYNTHESES AND PROPERTIES OF ACETYLENIC ANALOGS OF MALACHITE GREEN, CRYSTAL VIOLET, AND THEIR RELATED COMPOUNDS. Chemistry Letters, 10(3), 311-314. doi:10.1246/cl.1981.311Dikusar, E. A. (2003). Tertiary Acetylenic Alcohols and Peroxides Derived from 4,4’-Bis(dimethylamino)benzophenone (Michler’s Ketone). Russian Journal of General Chemistry, 73(9), 1406-1409. doi:10.1023/b:rugc.0000015988.84852.9dGabbutt, C. D., Heron, B. M., Kilner, C., & Kolla, S. B. (2010). The influence of a 1,1-diarylvinyl moiety on the photochromism of naphthopyrans. Organic & Biomolecular Chemistry, 8(21), 4874. doi:10.1039/c0ob00141dAkiyama, S., Nakatsuji, S., Nakashima, K., & Yamasaki, S. (1988). Diphenylmethane and triphenylmethane dye ethynovinylogues with absorption bands in the near-infrared11Ethynologues of Triphenylmethane Dyes V: Part IV.2,3. Dyes and Pigments, 9(6), 459-466. doi:10.1016/0143-7208(88)82005-9Gorman, S. A., Hepworth, J. D., & Mason, D. (2000). The effects of cyclic terminal groups in di- and tri-arylmethane dyes. Part 3. Consequences of unsymmetrical substitution in Malachite Green. Journal of the Chemical Society, Perkin Transactions 2, (9), 1889-1895. doi:10.1039/b003219kNakatsuji, S., Okamoto, N., Nakashima, K., & Akiyama, S. (1986). SYNTHESIS AND ELECTRONIC ABSORPTION SPECTRA OF MONOETHYNOLOGS OF MALACHITE GREEN WITH p-SUBSTITUENT ON PHENYL RING. Chemistry Letters, 15(3), 329-332. doi:10.1246/cl.1986.329Tachikawa, T., Handa, C., & Tokita, S. (2003). Synthesis and Radiation Sensitivity of Tris (4-N,N-dimethylaminophenyl)methanethiol. Journal of Photopolymer Science and Technology, 16(2), 187-190. doi:10.2494/photopolymer.16.18

    Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease

    Full text link
    [EN] Silica mesoporous microparticles loaded with both rhodamine B fluorophore (S1) or hydrocortisone (S2), and capped with an olsalazine derivative, are prepared and fully characterized. Suspensions of Si and S2 in water at an acidic and a neutral pH show negligible dye/drug release, yet a notable delivery took place when the reducing agent sodium dithionite is added because of hydrolysis of an azo bond in the capping ensemble. Additionally, olsalazine fragmentation induced 5-aminosalicylic acid (5-ASA) release. In vitro digestion models show that S1 and S2 solids are suitable systems to specifically release a pharmaceutical agent in the colon. In vivo pharmacokinetic studies in rats show a preferential rhodamine B release from Si in the colon. Moreover, a model of ulcerative colitis is induced in rats by oral administration of 2,4,6-trinitrobenzenesulfonic acid (TNBS) solutions, which was also used to prove the efficacy of S2 for colitis treatment. The specific delivery of hydrocortisone and 5-ASA from S2 material to the colon tissue in injured rats markedly lowers the colon/body weight ratio and the clinical activity score. Histological studies showed a remarkable reduction in inflammation, as well as an intensive regeneration of the affected tissues.We thank the Generalitat Valenciana (Project PROMETE02018/024) and the Spanish Government (Projects AGL2015-70235-C2-2-R and MAT2015-64139-C4-1-R (MINECO/FEDER)) for support. A.H.T. thanks the Spanish MEC for his FPU fellowship. The authors also thank the support of the Electron Microscopy Service at the UPV. The SCSIE (of the Universitat de Valencia) is also gratefully acknowledged for all the equipment used. NMR spectra were measured at the U26 facility of ICTS "NANBIOSIS" at the Universitat de Valencia.Hernández Teruel, A.; Pérez-Esteve, É.; González-Álvarez, I.; González-Álvarez, M.; Costero Nieto, AM.; Ferri, D.; Gaviña, P.... (2019). Double Drug Delivery Using Capped Mesoporous Silica Microparticles for the Effective Treatment of Inflammatory Bowel Disease. Molecular Pharmaceutics. 16(6):2418-2429. https://doi.org/10.1021/acs.molpharmaceut.9b00041S24182429166Baumgart, D. C., & Sandborn, W. J. (2012). Crohn’s disease. The Lancet, 380(9853), 1590-1605. doi:10.1016/s0140-6736(12)60026-9Pierik, M., Yang, H., Barmada, M. M., Cavanaugh, J. A., Annese, V., Brant, S. R., … Vlietinck, R. (2005). The IBD International Genetics Consortium Provides Further Evidence for Linkage to IBD4 and Shows Gene-Environment Interaction. Inflammatory Bowel Diseases, 11(1), 1-7. doi:10.1097/00054725-200501000-00001Loftus, E. V. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology, 126(6), 1504-1517. doi:10.1053/j.gastro.2004.01.063Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., & Finlay, B. B. (2007). Host-Mediated Inflammation Disrupts the Intestinal Microbiota and Promotes the Overgrowth of Enterobacteriaceae. Cell Host & Microbe, 2(2), 119-129. doi:10.1016/j.chom.2007.06.010Takaishi, H., Matsuki, T., Nakazawa, A., Takada, T., Kado, S., Asahara, T., … Hibi, T. (2008). Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. International Journal of Medical Microbiology, 298(5-6), 463-472. doi:10.1016/j.ijmm.2007.07.016Sokol, H., Seksik, P., Furet, J. P., Firmesse, O., Nion-Larmurier, I., Beaugerie, L., … Doré, J. (2009). Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflammatory Bowel Diseases, 15(8), 1183-1189. doi:10.1002/ibd.20903Friswell, M., Campbell, B., & Rhodes, J. (2010). The Role of Bacteria in the Pathogenesis of Inflammatory Bowel Disease. Gut and Liver, 4(3), 295-306. doi:10.5009/gnl.2010.4.3.295Qiu, X., Zhang, M., Yang, X., Hong, N., & Yu, C. (2013). Faecalibacterium prausnitzii upregulates regulatory T cells and anti-inflammatory cytokines in treating TNBS-induced colitis. Journal of Crohn’s and Colitis, 7(11), e558-e568. doi:10.1016/j.crohns.2013.04.002Yu, C. G., & Huang, Q. (2013). Recent progress on the role of gut microbiota in the pathogenesis of inflammatory bowel disease. Journal of Digestive Diseases, 14(10), 513-517. doi:10.1111/1751-2980.12087Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012Kappelman, M. D., Rifas–Shiman, S. L., Porter, C. Q., Ollendorf, D. A., Sandler, R. S., Galanko, J. A., & Finkelstein, J. A. (2008). Direct Health Care Costs of Crohn’s Disease and Ulcerative Colitis in US Children and Adults. Gastroenterology, 135(6), 1907-1913. doi:10.1053/j.gastro.2008.09.012Rocchi, A., Benchimol, E. I., Bernstein, C. N., Bitton, A., Feagan, B., Panaccione, R., … Ghosh, S. (2012). Inflammatory Bowel Disease: A Canadian Burden of Illness Review. Canadian Journal of Gastroenterology, 26(11), 811-817. doi:10.1155/2012/984575Burisch, J., Jess, T., Martinato, M., & Lakatos, P. L. (2013). The burden of inflammatory bowel disease in Europe. Journal of Crohn’s and Colitis, 7(4), 322-337. doi:10.1016/j.crohns.2013.01.010Marchetti, M., & Liberato, N. L. (2014). Biological therapies in Crohn’s disease: are they cost-effective? A critical appraisal of model-based analyses. Expert Review of Pharmacoeconomics & Outcomes Research, 14(6), 815-824. doi:10.1586/14737167.2014.957682Park, S. J. (2014). Clinical characteristics and treatment of inflammatory bowel disease: A comparison of Eastern and Western perspectives. World Journal of Gastroenterology, 20(33), 11525. doi:10.3748/wjg.v20.i33.11525Ng, S. C., Tang, W., Ching, J. Y., Wong, M., Chow, C. M., Hui, A. J., … Chan, F. K. L. (2013). Incidence and Phenotype of Inflammatory Bowel Disease Based on Results From the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology, 145(1), 158-165.e2. doi:10.1053/j.gastro.2013.04.007Sood, A. (2003). Incidence and prevalence of ulcerative colitis in Punjab, North India. Gut, 52(11), 1587-1590. doi:10.1136/gut.52.11.1587Tozun, N., Atug, O., Imeryuz, N., Hamzaoglu, H. O., Tiftikci, A., Parlak, E., … Yurdaydin, C. (2009). Clinical Characteristics of Inflammatory Bowel Disease in Turkey. Journal of Clinical Gastroenterology, 43(1), 51-57. doi:10.1097/mcg.0b013e3181574636Victoria, C. R., Sassak, L. Y., & Nunes, H. R. de C. (2009). Incidence and prevalence rates of inflammatory bowel diseases, in midwestern of São Paulo State, Brazil. Arquivos de Gastroenterologia, 46(1), 20-25. doi:10.1590/s0004-28032009000100009Fakhoury, M., Al-Salami, H., Negrulj, R., & Mooranian, A. (2014). Inflammatory bowel disease: clinical aspects and treatments. Journal of Inflammation Research, 113. doi:10.2147/jir.s65979Mowat, C., Cole, A., Windsor, A., Ahmad, T., Arnott, I., … Driscoll, R. (2011). Guidelines for the management of inflammatory bowel disease in adults. Gut, 60(5), 571-607. doi:10.1136/gut.2010.224154Di Sario, A., Bendia, E., Schiadà, L., Sassaroli, P., & Benedetti, A. (2016). Biologic Drugs in Crohn’;s Disease and Ulcerative Colitis: Safety Profile. Current Drug Safety, 11(1), 55-61. doi:10.2174/157488631101160212171757Collnot, E.-M., Ali, H., & Lehr, C.-M. (2012). Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. Journal of Controlled Release, 161(2), 235-246. doi:10.1016/j.jconrel.2012.01.028Lamprecht, A., Rodero Torres, H., Schäfer, U., & Lehr, C.-M. (2000). Biodegradable microparticles as a two-drug controlled release formulation: a potential treatment of inflammatory bowel disease. Journal of Controlled Release, 69(3), 445-454. doi:10.1016/s0168-3659(00)00331-xTeruel, A., Coll, C., Costero, A., Ferri, D., Parra, M., Gaviña, P., … Sancenón, F. (2018). Functional Magnetic Mesoporous Silica Microparticles Capped with an Azo-Derivative: A Promising Colon Drug Delivery Device. Molecules, 23(2), 375. doi:10.3390/molecules23020375Teruel, A. H., Pérez-Esteve, É., González-Álvarez, I., González-Álvarez, M., Costero, A. M., Ferri, D., … Sancenón, F. (2018). Smart gated magnetic silica mesoporous particles for targeted colon drug delivery: New approaches for inflammatory bowel diseases treatment. Journal of Controlled Release, 281, 58-69. doi:10.1016/j.jconrel.2018.05.007Sancenón, F., Pascual, L., Oroval, M., Aznar, E., & Martínez-Máñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Aznar, E., Oroval, M., Pascual, L., Murguía, J. R., Martínez-Máñez, R., & Sancenón, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456Llopis-Lorente, A., Díez, P., Sánchez, A., Marcos, M. D., Sancenón, F., Martínez-Ruiz, P., … Martínez-Máñez, R. (2017). Interactive models of communication at the nanoscale using nanoparticles that talk to one another. Nature Communications, 8(1). doi:10.1038/ncomms15511De la Torre, C., Domínguez-Berrocal, L., Murguía, J. R., Marcos, M. D., Martínez-Máñez, R., Bravo, J., & Sancenón, F. (2018). ϵ -Polylysine-Capped Mesoporous Silica Nanoparticles as Carrier of the C 9h Peptide to Induce Apoptosis in Cancer Cells. Chemistry - A European Journal, 24(8), 1890-1897. doi:10.1002/chem.201704161Oroval, M., Díez, P., Aznar, E., Coll, C., Marcos, M. D., Sancenón, F., … Martínez-Máñez, R. (2016). Self-Regulated Glucose-Sensitive Neoglycoenzyme-Capped Mesoporous Silica Nanoparticles for Insulin Delivery. Chemistry - A European Journal, 23(6), 1353-1360. doi:10.1002/chem.201604104De la Torre, C., Casanova, I., Acosta, G., Coll, C., Moreno, M. J., Albericio, F., … Martínez-Máñez, R. (2014). Gated Mesoporous Silica Nanoparticles Using a Double-Role Circular Peptide for the Controlled and Target-Preferential Release of Doxorubicin in CXCR4-Expresing Lymphoma Cells. Advanced Functional Materials, 25(5), 687-695. doi:10.1002/adfm.201403822Giménez, C., Climent, E., Aznar, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., … Rurack, K. (2014). Towards Chemical Communication between Gated Nanoparticles. Angewandte Chemie International Edition, n/a-n/a. doi:10.1002/anie.201405580García-Fernández, A., García-Laínez, G., Ferrándiz, M. L., Aznar, E., Sancenón, F., Alcaraz, M. J., … Orzáez, M. (2017). Targeting inflammasome by the inhibition of caspase-1 activity using capped mesoporous silica nanoparticles. Journal of Controlled Release, 248, 60-70. doi:10.1016/j.jconrel.2017.01.002Llopis-Lorente, A., Lozano-Torres, B., Bernardos, A., Martínez-Máñez, R., & Sancenón, F. (2017). Mesoporous silica materials for controlled delivery based on enzymes. Journal of Materials Chemistry B, 5(17), 3069-3083. doi:10.1039/c7tb00348jCabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Lunn, G. (2005). HPLC Methods for Recently Approved Pharmaceuticals. doi:10.1002/0471711683Navarro, C., González-Álvarez, I., González-Álvarez, M., Manku, M., Merino, V., Casabó, V. G., & Bermejo, M. (2011). Influence of polyunsaturated fatty acids on Cortisol transport through MDCK and MDCK-MDR1 cells as blood–brain barrier in vitro model. European Journal of Pharmaceutical Sciences, 42(3), 290-299. doi:10.1016/j.ejps.2010.12.005Mura, C., Nácher, A., Merino, V., Merino-Sanjuan, M., Carda, C., Ruiz, A., … Diez-Sales, O. (2011). N-Succinyl-chitosan systems for 5-aminosalicylic acid colon delivery: In vivo study with TNBS-induced colitis model in rats. International Journal of Pharmaceutics. doi:10.1016/j.ijpharm.2011.06.025Sandborn, W. J., & Hanauer, S. B. (2002). The pharmacokinetic profiles of oral mesalazine formulations and mesalazine pro-drugs used in the management of ulcerative colitis. Alimentary Pharmacology & Therapeutics, 17(1), 29-42. doi:10.1046/j.1365-2036.2003.01408.xMladenovska, K., Raicki, R. S., Janevik, E. I., Ristoski, T., Pavlova, M. J., Kavrakovski, Z., … Goracinova, K. (2007). Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. International Journal of Pharmaceutics, 342(1-2), 124-136. doi:10.1016/j.ijpharm.2007.05.028Oomen, A. G., Rompelberg, C. J. M., Bruil, M. A., Dobbe, C. J. G., Pereboom, D. P. K. H., & Sips, A. J. A. M. (2003). Development of an In Vitro Digestion Model for Estimating the Bioaccessibility of Soil Contaminants. Archives of Environmental Contamination and Toxicology, 44(3), 281-287. doi:10.1007/s00244-002-1278-0Versantvoort, C. H. M., Oomen, A. G., Van de Kamp, E., Rompelberg, C. J. M., & Sips, A. J. A. M. (2005). Applicability of an in vitro digestion model in assessing the bioaccessibility of mycotoxins from food. Food and Chemical Toxicology, 43(1), 31-40. doi:10.1016/j.fct.2004.08.007Tozaki, H., Fujita, T., Komoike, J., Kim, S.-I., Terashima, H., Muranishi, S., … Yamamoto, A. (1999). Colon-specific Delivery of Budesonide with Azopolymer-coated Pellets: Therapeutic Effects of Budesonide with a Novel Dosage Form against 2,4,6-Trinitrobenzenesulphonic Acid-induced Colitis in Rats. Journal of Pharmacy and Pharmacology, 51(3), 257-261. doi:10.1211/0022357991772420Tozaki, H., Odoriba, T., Okada, N., Fujita, T., Terabe, A., Suzuki, T., … Yamamoto, A. (2002). Chitosan capsules for colon-specific drug delivery: enhanced localization of 5-aminosalicylic acid in the large intestine accelerates healing of TNBS-induced colitis in rats. Journal of Controlled Release, 82(1), 51-61. doi:10.1016/s0168-3659(02)00084-6Yoo, J.-W., Naeem, M., Cao, J., Choi, M., Kim, W., Moon, H. R., … Jung, Y. (2015). Enhanced therapeutic efficacy of budesonide in experimental colitis with enzyme/pH dual-sensitive polymeric nanoparticles. International Journal of Nanomedicine, 4565. doi:10.2147/ijn.s8781

    Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials

    Full text link
    [EN] A hybrid capped mesoporous material, which was selectively opened in the presence of Tetryl and TNT, has been synthesised and used for the fluorogenic recognition of these nitroaromatic explosives.Financial support from the Spanish Government (project MAT2012-38429-C04-01) and the Generalitat Valencia (project PROMETEO/2009/016) is gratefully acknowledged. Y.S. and E.P. are grateful to the Spanish Ministry of Science and Innovation for their grants. A. A. also thanks the Generalitat Valenciana for his Santiago Grisolia fellowship.Salinas Soler, Y.; Agostini, A.; Pérez Esteve, E.; Martínez Mañez, R.; Sancenón Galarza, F.; Marcos Martínez, MD.; Soto Camino, J.... (2013). Fluorogenic detection of Tetryl and TNT explosives using nanoscopic-capped mesoporous hybrid materials. Journal of Materials Chemistry. 1(11):3561-3564. https://doi.org/10.1039/C3TA01438JS35613564111Singh, S. (2007). Sensors—An effective approach for the detection of explosives. Journal of Hazardous Materials, 144(1-2), 15-28. doi:10.1016/j.jhazmat.2007.02.018Schulte-Ladbeck, R., Vogel, M., & Karst, U. (2006). Recent methods for the determination of peroxide-based explosives. Analytical and Bioanalytical Chemistry, 386(3), 559-565. doi:10.1007/s00216-006-0579-ySmith, R. G., D’Souza, N., & Nicklin, S. (2008). A review of biosensors and biologically-inspired systems for explosives detection. The Analyst, 133(5), 571. doi:10.1039/b717933mMoore, D. S. (2004). Instrumentation for trace detection of high explosives. Review of Scientific Instruments, 75(8), 2499-2512. doi:10.1063/1.1771493H�kansson, K., Coorey, R. V., Zubarev, R. A., Talrose, V. L., & H�kansson, P. (2000). Low-mass ions observed in plasma desorption mass spectrometry of high explosives. Journal of Mass Spectrometry, 35(3), 337-346. doi:10.1002/(sici)1096-9888(200003)35:33.0.co;2-7Wallis, E., Griffin, T. M., Popkie, Jr., N., Eagan, M. A., McAtee, R. F., Vrazel, D., & McKinly, J. (2005). Instrument response measurements of ion mobility spectrometers in situ: maintaining optimal system performance of fielded systems. Chemical and Biological Sensing VI. doi:10.1117/12.609920Germain, M. E., & Knapp, M. J. (2009). Optical explosives detection: from color changes to fluorescence turn-on. Chemical Society Reviews, 38(9), 2543. doi:10.1039/b809631gForzani, E. S., Lu, D., Leright, M. J., Aguilar, A. D., Tsow, F., Iglesias, R. A., … Tao, N. (2009). A Hybrid Electrochemical−Colorimetric Sensing Platform for Detection of Explosives. Journal of the American Chemical Society, 131(4), 1390-1391. doi:10.1021/ja809104hSalinas, Y., Martínez-Máñez, R., Marcos, M. D., Sancenón, F., Costero, A. M., Parra, M., & Gil, S. (2012). Optical chemosensors and reagents to detect explosives. Chem. Soc. Rev., 41(3), 1261-1296. doi:10.1039/c1cs15173hThomas, S. W., Joly, G. D., & Swager, T. M. (2007). Chemical Sensors Based on Amplifying Fluorescent Conjugated Polymers. Chemical Reviews, 107(4), 1339-1386. doi:10.1021/cr0501339Gao, D., Wang, Z., Liu, B., Ni, L., Wu, M., & Zhang, Z. (2008). Resonance Energy Transfer-Amplifying Fluorescence Quenching at the Surface of Silica Nanoparticles toward Ultrasensitive Detection of TNT. Analytical Chemistry, 80(22), 8545-8553. doi:10.1021/ac8014356Zhang, S., Lü, F., Gao, L., Ding, L., & Fang, Y. (2007). Fluorescent Sensors for Nitroaromatic Compounds Based on Monolayer Assembly of Polycyclic Aromatics. Langmuir, 23(3), 1584-1590. doi:10.1021/la062773sHughes, A. D., Glenn, I. C., Patrick, A. D., Ellington, A., & Anslyn, E. V. (2008). A Pattern Recognition Based Fluorescence Quenching Assay for the Detection and Identification of Nitrated Explosive Analytes. Chemistry - A European Journal, 14(6), 1822-1827. doi:10.1002/chem.200701546Vijayakumar, C., Tobin, G., Schmitt, W., Kim, M.-J., & Takeuchi, M. (2010). Detection of explosive vapors with a charge transfer molecule: self-assembly assisted morphology tuning and enhancement in sensing efficiency. Chemical Communications, 46(6), 874. doi:10.1039/b921520dSalinas, Y., Climent, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., … Pérez de Diego, A. (2011). Highly selective and sensitive chromo-fluorogenic detection of the Tetryl explosive using functional silica nanoparticles. Chemical Communications, 47(43), 11885. doi:10.1039/c1cc14877jCliment, E., Martínez-Máñez, R., Sancenón, F., Marcos, M. D., Soto, J., Maquieira, A., & Amorós, P. (2010). Controlled Delivery Using Oligonucleotide-Capped Mesoporous Silica Nanoparticles. Angewandte Chemie International Edition, 49(40), 7281-7283. doi:10.1002/anie.201001847Climent, E., Marcos, M. D., Martínez-Máñez, R., Sancenón, F., Soto, J., Rurack, K., & Amorós, P. (2009). The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification. Angewandte Chemie International Edition, 48(45), 8519-8522. doi:10.1002/anie.200904243Climent, E., Bernardos, A., Martínez-Máñez, R., Maquieira, A., Marcos, M. D., Pastor-Navarro, N., … Amorós, P. (2009). Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers. Journal of the American Chemical Society, 131(39), 14075-14080. doi:10.1021/ja904456dCabrera, S., El Haskouri, J., Guillem, C., Latorre, J., Beltrán-Porter, A., Beltrán-Porter, D., … Amorós *, P. (2000). Generalised syntheses of ordered mesoporous oxides: the atrane route. Solid State Sciences, 2(4), 405-420. doi:10.1016/s1293-2558(00)00152-7Kolb, H. C., Finn, M. G., & Sharpless, K. B. (2001). Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie International Edition, 40(11), 2004-2021. doi:10.1002/1521-3773(20010601)40:113.0.co;2-5Felix, F., Ferguson, J., Guedel, H. U., & Ludi, A. (1980). The electronic spectrum of tris(2,2’-bipyridine)ruthenium(2+). Journal of the American Chemical Society, 102(12), 4096-4102. doi:10.1021/ja00532a019Lytle, F. E., & Hercules, D. M. (1969). Luminescence of tris(2,2’-bipyridine)ruthenium(II) dichloride. Journal of the American Chemical Society, 91(2), 253-257. doi:10.1021/ja01030a00

    Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports

    Full text link
    A new hybrid material based on sulforhodamine-B dye-loaded silica mesoporous nanoparticles capped with a self-immolative gate has been synthesized and characterized. The gated material's controlled release behavior is monitored under different pH conditions. Under acidic and neutral conditions, a low level of dye release is detected. However, at slightly basic pH, significant dye release occurs owing to deprotonation of the phenol moiety in the capping molecule, which results in its disassembly.We thank MINECO/FEDER (MAT2015-64139-C4-1-R and MAT2015-64139-C4-4-R) and Generalitat Valenciana (PROMETEOII/2014/047) for support. SCSIE (Universidad de Valencia) is gratefully acknowledged for all the equipment employed.Juarez, LA.; Añón, E.; Giménez Morales, C.; Sancenón Galarza, F.; Martínez-Máñez, R.; Costero Nieto, AM.; Gaviña, P.... (2016). Self-Immolative Linkers as Caps for the Design of Gated Silica Mesoporous Supports. Chemistry - A European Journal. 22(40):14126-14130. https://doi.org/10.1002/chem.201602126S1412614130224

    Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants

    Full text link
    [EN] Gold nanoparticles functionalized with a triarylcarbinol derivative have been used as colorimetric molecular probes for the naked-eye detection of the nerve agent simulants DCNP and DFP. The detection process is based on the compensation of charges at the surface of the nanoparticles which triggers their aggregation in solution with the resulting change in their plasmon band. (C) 2014 Elsevier Ltd. All rights reserved.We thank the Spanish Government and the European FEDER funds (project MAT2012-38429-C04-02) for support. A.M. is grateful to the Spanish Government for a fellowship. SCSIE (Universidad de Valencia) is also gratefully acknowledged for all the equipment employed.Martí, A.; Costero Nieto, AM.; Gaviña Costero, P.; Parra Álvarez, M. (2014). Triarylcarbinol functionalized gold nanoparticles for the colorimetric detection of nerve agent simulants. Tetrahedron Letters. 55(19):3093-3096. https://doi.org/10.1016/j.tetlet.2014.03.139S30933096551

    Influence of side chain characteristics on the aggregation-induced emission (AIE) properties of tetrasubstituted tetraphenylethylene (TPE)

    No full text
    Five new tetraphenylethylene (TPE) derivatives were synthesised and their aggregation-induced emission (AIE) was evaluated in mixtures of THF/water and MeOH/water. The influence of regiochemistry and length of the chains in the substituents on emissive properties was studied

    Ratiometric double channel borondipyrromethene based chemodosimeter for the selective detection of nerve agent mimics

    Full text link
    A new chromo-fluorogenic probe based on the borondipyrromethene dye has been synthesized. The dye has been attached to a sensing unit for the diethylcyanophosphonate and di-isopropylfluorophosphate detection. The new probe has been fully characterized, and its optical properties in front of these simulants have been evaluated. No interference from other organo-phosphorous or other common contaminants compounds has been observed in the detection conditions. A portable kit has been developed and tested to demonstrate its practical application in real-time monitoring not only in solution but also in gas phase.We thank the Spanish Government and the European FEDER funds (project MAT2012-38429-C04-02 and 01). SCSIE and ICMOL (Universidad de Valencia) are gratefully acknowledged for all the equipment employed. R.G. is grateful to the Spanish Ministry of Education for its FPU grant. Knut Rurack is gratefully acknowledged for the life-time measurements performed at his lab.Gotor, R.; Costero Nieto, AM.; Gaviña, P.; Gil Grau, S. (2014). Ratiometric double channel borondipyrromethene based chemodosimeter for the selective detection of nerve agent mimics. Dyes and Pigments. 108:76-83. https://doi.org/10.1016/j.dyepig.2014.04.011S768310
    corecore